Single-step method for genectic evaluation

- Ismo Stranden, MTT
- Ole Christensen, AU

- <u>Main messages</u>:
- Conceptually simple
- Cmputationally feasible in practice
- Tweaks are needed, but have (mostly) been solved

Single-step method

- Traditional genetic evaluation: pedigree relationship matrix, BLUP, multivariate models, etc
- Genomic evaluation in cattle: three steps
- 1. Compute deregressed EBV (pseudo phenotype)
- 2. Genomic prediction model
- 3. Blending
- Single-step: similar to traditional genetic evaluation, with difference being that pedigree relationship is replaced by combined relationship (both genomic and pedigree).

Single step method

- Usual additive relationship matrix constructed from pedigree is replaced by a combined relationship matrix.
- Combined relatinship matrix extends GBLUP to nongenotyped animals.
- Combined relationship matrix has a sparse inverse (good for fast computing !)
- BLUP, AI-REML, multivariate model, genetic groups, heterogeneous variance, maternal effects, etc.

Single-step in Danish pig breeding

- Genomic selection in pig project: a collaboration between VSP and AU
- Single-step used in routine evaluation for Duroc, Landrace and Yorkshire from October 2011.
- Single-step is more accuate than traditional method.
- Transition from traditional genetic evaluation to genomic evaluation went fairly smooth: all the old models still used, only difference is combined relationship.
- Now: VSP are improving old models
- Research: GS for crossbred performance

Single-step: Complete model solving (Nordic red)

- Routine TD evaluation, no heterogeneous var. correction
- Production traits:
 - runs took ~12 h
 - For maximum 1500 iterations rounds there was no time and convergence difference in TD and in single-step TD

	ROUND	CD		
EBV _F 12h	1500	0.1077E-02		
GEBV _F 12h 27 min	1500	0.1159E-02		

Udder health traits:

 Runs took 17 – 31 h; single step models needed ~1600 iteration rounds and 14 h more for convergence than models without genomic data

		ROUND	CD
EBV_F	17h	2199	0.9892E-04
$GEBV_F$	31 h	3757	0.9944E-04

- Previous exercise used G⁻¹
- Can be relaxed: single-step using **G** or its components

Nordic red and single-step

Nordic red is composed of three 'populations'

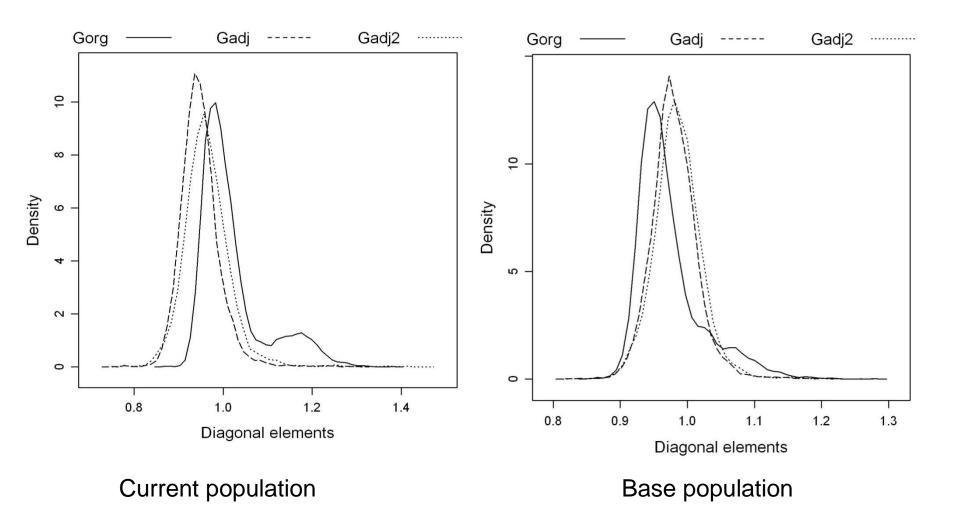
- Different populations have different allele frequencies (AF)
- \rightarrow Different genomic relationship matrices (**G**):

Need to account breed composition of animal

- similar to accounting for multiple breeds in traditional evaluation

Relationship matrix **A** using pedigree traces information to base population

Used allele frequencies define base population in G.


Use base population AF instead of current (genotyped) population AF

Diagonal elements of G matrix

Gorg: standard G

Gadj, Gadj2: account breed differences in G

Weighing matrices in single step

• Standard:
$$\mathbf{H}^{-1} = \mathbf{A}^{-1} + \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{G}^{-1} - \mathbf{A}_{22}^{-1} \end{bmatrix}$$

- Mixing **G** with **A**: $\mathbf{G}_{\alpha} = \alpha \mathbf{G} + (1 \alpha) \mathbf{A}_{22}$
- Give weights to inverses (I. Misztal):

$$\mathbf{H}^{-1} = \mathbf{A}^{-1} + \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \tau \mathbf{G}^{-1} - \boldsymbol{\omega} \mathbf{A}_{22}^{-1} \end{bmatrix}$$

Values of 1.5 and 0.6 by I. Misztal make magic.

Validation results (G-BLUP)

Target for b_1 is one (1), and validation reliability R^2 as high as possible

		Mil	Milk Protein		Fat				
Base population	on AF	b ₁	R ²	b ₀	b ₁	R ²	b ₀	b ₁	R ²
Gorg	84.06	0.770	0.351	76.11	0.895	0.378	82.81	0.845	0.443
Gorg (0.5, 0.5)	81.77	0.815	0.327	71.92	0.970	0.355	80.27	0.905	0.408
Gorg _(1.5, 0.6)	83.60	0.883	0.357	76.37	0.983	0.371	82.93	0.964	0.443
Gadj	84.84	0.750	0.341	77.49	0.875	0.353	83.43	0.837	0.434
Gadj (0.5, 0.5)	82.64	0.786	0.319	74.53	0.898	0.335	80.88	0.886	0.400
Gadj (1.5, 0.6)	84.59	0.846	0.348	79.19	0.894	0.345	83.46	0.949	0.435

Conclusions

- Genomic enhanced evaluation possible through use of genomic relationship matrix **G** in current evaluations
- Genomic data brings new challenge: G vs. A
 - Complexities of population structure
- Population structure in **G** through breed proportions
- How to weigh **G** and **A**, and their inverses?